तारों का सतत स्पेक्ट्रम और तारकीय स्पेक्ट्रमों में रेखाओं का विस्तार - Study Search Point

निरंतर कर्म और प्रयास ही सफलता की कुंजी हैं।

तारों का सतत स्पेक्ट्रम और तारकीय स्पेक्ट्रमों में रेखाओं का विस्तार

Share This
सूर्य पृथ्वी के सबसे निकट का और सबसे अधिक चमकीला तारा है, जो प्रेक्षणीय मंडलक प्रदर्शित करता है। यह स्वाभाविक है कि तारों के सतत स्पेक्ट्रम सिद्धांत की जाँच सूर्य के ऊपर इसके अनुप्रयोग द्वारा की जाए। सूर्य मंडलक के ऊपर की तीव्रता वितरण का प्रेक्षण समाकलित (integrated) प्रकाश में ही नहीं वरन् अलग अलग तरंगदैर्ध्य के एकवर्णी प्रकाश में भी किया गया है। यह पाया गया कि अंग (Limb) तक पहुँचन पर तीव्रता घट जाती है और अंगतमिस्रण की घटना दीर्घ तरंगदैर्ध्य की अपेक्षा लघु तरंगदैर्ध्य में अधिक स्पष्ट होती है। शुस्टर ने इस प्रेक्षित अंगतमिस्रण की व्याख्या करते समय यह मान लिया था कि प्रकाशमंडल सभी दिशाओं में समान रूप से विकिरण करता है और उसके चारों ओर का गैसीय परिमंडल सभी आवृत्तियों पर उसका अवशोषण और उत्सर्जन करता है। यह मानकर कि गैसीय परिमंडल निचले प्रकाशीय मंडल की अपेक्षा ठंढा है, शुस्टर ने एक सैद्धांतिक नियम का प्रतिपादन किया और इस सिद्धांत की प्रेक्षणों से तुलना की। तारकीय परिमंडल में विकिरणात्मक (radiative) संतुलन की महत्ता को समझने का श्रेय श्वार्ट्स चाइल्ड को है जो यह दिखाने में सफल रहे कि प्रेक्षणों के साथ रुद्धोष्म (adiabatic) संतुलन की अपेक्षा विकिरणात्मक संतुलन का अधिक तालमेल बैठता है। इस विचार के अनुसार अभ्यंतर से ऊर्जा का अभिगमन एक स्तर से दूसरे स्तर तक विकिरण द्वारा होता है। संतुलन के लिए परिमंडल में एक निश्चित ताप वितरण आवश्यक है। यदि हम अनुमान कर लें कि ताप भीतर की ओर बढ़ता जाता है, तो अंगतमिश्रण की घटना को बड़ी सरलता से समझा जा सकता है। जैसे जैसे हम मंडलक केंद्र से अंग की ओर अग्रसर होते हैं, दृष्टिरेखा सतह के उस बिंदु पर अधिकाधिक झुक जाती है जहाँ वह सौर परिमंडल में प्रवेश करती है। फलस्वरूप उत्सर्जित तीव्रता में अंशदान करनेवाले स्तर की औसत गहराई घट जाती है। चूँकि ताप भीतर की ओर बढ़ता है अत: अगतमिस्रण उत्पन्न हो जाता है। श्वार्ट्सचालइल्ड के विचारों से मूल समस्याओं को समझने में काफी सहायता मिली परंतु बोर (Bohr) के परमाणु सिद्धांत के विकसित होने तक और सतत अवशोषण एवं उत्सर्जन की प्रक्रिया समझा में आने तक वे विचार अस्पष्ट रहे। इस सिद्धांत के अनुसार संतत अवशोषण तभी होता है जब कि बद्ध इलेक्ट्रॉन प्रकाशिक आयनन (photoionnisation) द्वारा मुक्त होता और संतत उत्सर्जन तभी होता है जब मुक्त इलेक्ट्रॉन का ग्रहण (capture) आयन द्वारा होता है।

परमाणु सिद्धांत के विकास की दृष्टि से श्वार्ट्स चाइल्ड के अन्वेषण निरंतर चलते रहे। 1920 ई. में लुंडब्लैंड ने (Lundbland) ने यह सिद्ध किया कि श्वार्ट् सचाइल्ड की कल्पनाएँ (assumptions), जैसे (1) अवशोषण गुणाक तरंगदैर्ध्य से स्वतंत्र है तथा (2) प्रकीर्णन (scattering) नगण्य है, बहुत हद तक ठीक हैं। इन कल्पनाओं के आधार पर व्युत्पन्न संतत स्पेक्ट्रम में तीव्रता का वितण प्रेक्षणों से भली भाँति मेल खाता है। श्वार्ट्सचाइल्ड की कल्पनाओं के आधार पर ही कार्य कर मिल्न (Milne) द्वारा आगे विकास किया गया और स्वतंत्र रूप से वे उन्हीं परिणामों पर पहुँचे जिन पर लंडब्लैड पहुँचे थे। मिल्न ने एक अन्वेषण द्वारा, जिसे उन्होंने 1923 ई. में प्रकाशित किया, संतत स्पेक्ट्रम के सिद्धांत का विस्तार समकालिक प्रकीर्णन और अवशोषण तक किया। संतत स्पेक्ट्रम के सिद्धांत में बनी कल्पनाओं की सार्थकता की जाँच तक ही भावी शोध सीमित था। ये कल्पनाएँ थीं :
(1) परिमंडल समतल समांतर है,
(2) यह विकिरणात्मक संतुलन में है,
(3) उत्सर्जन गुणांक प्रत्येक स्थान पर किर्खहाफ्र प्लांक के संबंध द्वारा व्यक्त किया गया है अर्थात् In = Kn Bn (T), तथा
(4) अवशोषण गुणांक आवृत्ति से स्वतंत्र है, केवल उन्हीं स्थितियों को छोड़कर जहाँ तीव्रता वितरण वक्रता से प्रभावित होता है।
पहली कल्पना की वैधता अनेक स्थितियों में सही सिद्ध हुई, दूसरी कल्पना के संबंध में यह देखा गया कि यदि संवहन द्वारा ऊर्जा अभिगमन नगण्य न हो तो संभावित विचलन हो सकते हैं। अनसॉल्ड ने सूर्य में एक संवहनी (convective) क्षेत्र का पता लगाया है। नवीनतम खोजों से पता लगता है कि विकिरणात्मक संतुलन का सबसे ऊपरी स्तर के प्रेक्षण से जो विरोधाभास है, वह सौरतल के दानेदार होन के करण है। कम से कम अधिक गहरे स्तर में, जहाँ यह माना जा सकता है कि ऊष्मागतिकी संतुलन विद्यमान है, तीसरी कल्पना वैध होगी। चौथे अनुमान की वैधता का परीक्षण करने के लिए मक्रिया (Mecrea), बियरमैन, (Biermann), अनसाल्ड, (Unsold), पेनीकॉक (Pannekock) और अन्य लोगों द्वारा अवशोषण गुणांक के विस्तृत परिकलन किए गए। इन लोगों ने अपने परिकलन में रसेल द्वारा निर्धारित सूर्य के रासायनिक संगठन का उपयोग किया। इन परिकलनों का उपयोग विभिन्न प्रभावी तापों पर तीव्रता वितरण के वक्र बाने के लिए किया गया और अनेक वैज्ञानिकों ने सूर्य और तारों के सतत स्पेक्ट्रमों के प्रेक्षणों से इनकी तुलना की। इस तुलना से यह पता चला कि परमाणु हाइड्रोजन का प्रकाशिक आयनन ऊष्ण तारों में मुख्य रूप से भाग लेता है जब कि सूर्य और इसी प्रकार के अन्य तारों के लिए संतत अवशोषण का अन्य स्रोत होना चाहिए। 1939 ई. में विल्ड्ट ने यह ज्ञात किया कि सौर किस्म के तारों में संतत अवशोषण का कारण ऋणात्मक हाइड्रोजन हो सकते हैं जिनमें एक प्रोटॉन और दो इलेक्ट्रान रहते हैं। इन आयनों के विन्यास (configuration) की स्थिरता आरंभ में ही स्थापित हो चुकी थी। यह शीघ्र ही मालूम हो गया कि संतत अवशोषण के स्रोत के रूप में ऋणात्मक हाइड्रोजन आयन की महत्ता 10,000 डिग्री के नीचे बढ़ जाती है और 6,000 डिग्री पर यह प्रबल हो जाती है। एक ओर चंद्रशेखर और दूसरी ओर चैर्लांग (Chalong) एवं कूर्गेनॉफ (Kourganoff) की खोजों से यह ज्ञात हो गया कि सौर मंडलक के अंगतमिस्रण (limbdarkening) के प्रेक्षण असाधारण रूप से सैद्धांतिक परिणामों के अनुरूप होते हैं, यदि ऋणात्मक हाइड्रोजन आयन के कारण होनेवाले अवशोषण को ध्यान में रखा जाए।
यद्यपि यह कहा जा सकता है कि तारों के संतत स्पेक्ट्रमों के बारे में हमें पर्याप्त जानकारी हो गई है, तथापि अभी बहुत सी समस्याओं का हल नहीं मिला है, उदाहरणार्थ, सूर्य का 4000 ॠ डिग्री के नीचे का संतत अवशोषण का स्रोत अभी भी अज्ञात है। इस संबंध में अनेक सिद्धांत प्रस्तुत किए गए हैं, पर कोई भी संतोषजनक नहीं है। अपेक्षाकृत ठंढे तारों में आण्विक यौगिक (molecular compound) प्रचुर मात्रा में पाए जाते हैं और उनका संतत अवशोषण अभी भी अज्ञात है। बम-विटेंस (Bohm-Vitense) ने हाल में 3840 ॠ डिग्री से लेकर 1,00,800 ॠ डिग्री ताप के लिए अनुमानित रासायनिक संगठनवाले तारकीय द्रव्यों के संतत अवशोषण के गुणांकों की सारणी प्रस्तुत की है। हाइड्रोजन (H), हीलियम (He) और हीलियमअ (He+) के अवशोषण की सारणी भी बेनो (Veno) द्वारा प्रस्तुत की गई है। 500 एंग्स्ट्रॉम पर के कुछ ऊष्ण तारों के स्पेक्ट्रम में होनेवाली असंतता और महादानवी (Super giant) तारों के संतत स्पेक्ट्रमों को अभी भी पूर्ण रूप से समझा नहीं जा सकता है। फिर भी हम यह कह सकते हैं कि इस शती के पूर्वार्ध में तारों के संतत स्पेक्ट्रम संबंधी ज्ञान में हुई प्रगति पर्याप्त संतोषजनक रही है। तारकीय स्पेक्ट्रमों में अवशोषण रेखाएँ - तारकीय स्पेक्ट्रमों में अवशोषण रेखाओं की रचना के बारे में प्रारंभिक विचार बड़े सरल थे। प्रकाशमंडल को घेरे हुए ठंढा गैसीय मंडल, प्रकाशमंडल से संतत उत्सर्जित होनेवाले विकिरण का वरणात्मक अवशोषण करता है जिससे अवशोषण रेखाएँ बनती हैं। सर्वप्रथम शुस्टर ने तारकीय स्पेक्ट्रमों में अवशोषण रेखाओं का क्रमबद्ध सिद्धांत प्रस्तुत किया। इन्होंने इन रेखाओं के बनने का कारण संतत प्रकीर्णन पर आरोपित स्पेक्ट्रम रेखाओं के अवशोषण को बताया। शुस्टर ने इन रेखाओं में तीव्रता की कमी के लिए कुछ परिकलन किए और उनकी जब प्रेक्षण से तुलना की तो यह ज्ञात हुआ कि समकालिक अवशोषण एवं प्रकीर्णन के विचार से शुस्टर की विधि सही थी। शुस्टर ने प्रकाशमंडल के चारों ओर शुद्ध प्रकीर्ण परिमंडल की कल्पना की। शुस्टर के बाद श्वार्ट् सचाइल्ड ने इस दिशा में कार्य किया। इन्होंने विकिरणात्मक संतुलन के आधार पर स्पेक्ट्रम रेखाओं में उत्सर्जन फलनों को ज्ञात किया और सौर मंडलक में अनेक बिंदुओं पर बनी सौर अवशोषण रेखाओं के प्रेक्षणों से उनकी तुलना की।
इन्होंने यह पाया कि अवशोषण रेखाओं के बनने में प्रकीर्णन का महत्वपूर्ण योग है, क्योंकि इनके प्रेक्षणों को एक शुद्ध अवशोषित परिमंडल द्वारा नहीं समझाया जा सकता। आधुनिक खगोलीय स्पेक्ट्रमिकी को प्रारंभ करने का श्रेय अनसल्ड को है, जिन्होंने सूर्य मंडलक के ऊपर पाई जानेवाली सोडियम रेखाओं की परिच्छेदिका क विशेष रूप से की गई प्रकाशमापीय मापों को श्वार्ट्सचाइल्ड द्वारा विकसित विकिरणात्मक (radiative) अंतरण (transfer) के सिद्धांत और रेखीय अवशोषण के क्वांटम सिद्धात से संबंध स्थापित करने का प्रयास किया और उसने सौर परिमंडल की इलेक्ट्रान दाब तथा कम से कम अंश: रासायनिक संघटन का पता लगाया। अनसल्ड के लेखों के पश्चात् इस दिशा में काफी तेजी से प्रगति हुई। 1929 ई. में एडिंग्टन ने अवशोषण रेखाओं के निर्माण पर एक निबंध प्रकाशित किया जिसमें तारकीय अवशोषण रेखाओं के बनने की विधि का स्पष्टीकरण किया था। इसके अनुसार इन रेखाओं के बनने में प्रकीर्णन और अवशोषण का समान रूप से हाथ से हाथ रहता है। इस प्रकार परिमंडल के सभी स्तरों पर प्रकीर्णन और अवशोषण होता है। इन रेखाओं के बनने का कारण यह है कि रेखा के समीप अवशोषण बहुत अधिक होता है। आगामी वर्षों में एडिंग्टन के सिद्धांत का मिल्न, वुलि (Woolley), पेनीकॉक, अनसल्ड और चंद्रशेखर द्वारा सुधार और विस्तार किया गया। इस प्रकार जब शुस्टर-श्वार्ट्सचाइल्ड के अनुसार रेखाओं का निर्माण प्रकाशमंडल के ऊपर स्थित उत्क्रमणमंडल (revensinglayer) में होता है, जो संतत स्पेक्ट्रम उत्पन्न करते हैं, मिल्नएडिंग्टन के अनुसार रेखीय अवशोषण के गुणांक और सतत अवशोषण के गुणांक का अनुपात सभी स्थानों पर स्थायी रहता है और सभी स्तर समान रूप से रेखिल और संतत अवशोषण उत्पन्न करने में समर्थ हैं। परंतु किसी रेखा की वास्तविक स्थिति दोनों चरम सीमाओं के बीच में होती है। उत्क्रमणमंडल और प्रकाशमंडल एक दूसरे में धीरे धीरे विलीन हो जाते हैं और प्रकाशमंडल की पहचान करनेवाला कारक अपारदर्शिता (opacity) क्रमिक वृद्धि है। मिल्न ने फ्राउनहोफर रेखाओं के बनने की दो अवस्थाओं पर विचार किया। पहला विचार था कि रेखाओं का निर्माण स्थानीय ऊष्मागतिकीय संतुलन या अवशोषण प्रक्रम के अंतर्गत होता है। यहाँ प्रत्यक स्तर ताप द्वारा वर्णित किया जाता है और किर्खहॉफ़ के नियम का पालन होता है। इस दृष्टि से एक तीव्र रेखा के केंद्र से हुआ विकिरण सबसे ऊपरी स्तर के अनुरूप होता है क्योंकि इस तरंगदैर्ध्य पर रेखिल अवशोषण गुणांक अधिक होता है और विकिरण केवल तल से पहुँचता है। समीप के सातत्यक (Continuum) में विकिरण का अधिकांश अपेक्षाकृत गरम और निचले स्तरों सा आता है। सूर्य के छोर की ओर निर्गत विकिरण सातत्य और रेखाओं दोनों में सर्वोच्च स्तर से आता है। इसके परिणामस्वरूप रेखाओं को छोर पर लुप्त हो जाना चाहिए।
दूसरी अवस्था में परमाणु किसी भी दशा में विकिरण क्षेत्र के ताप संतुलन में नहीं है किंतु वे अधिक गहराई से अपने तक पहुँचनेवाले क्वांटा (Quanta) का वर्णात्मक प्रकीर्णन करते हैं। इस प्रकार एक विशिष्ट प्रकाश क्वांटम का तल तक पहुँचने का बहुत कम अवसर प्राप्त होता है। प्रकीर्णन की इस क्रियाविधि द्वारा बनी अवशोषणरेखा का केंद्र काला होगा। फ्रॉउनहोफर की कोई रेखा न तो केंद्र में काली होती है और न छोर पर अदृश्य। निम्न केंद्रीय तीव्रतावाली अनुनाद रेखाएँ (reasonance lines) प्रकीर्णन की क्रियाविधि को बढ़ावा देती हैं जबकि उच्च स्तरवाली गौण (subordinate) रेखाएँ अवशोषणप्रक्रम को बढ़ावा देती हैं। अनसल्ड, पेनीका, मिनर्ट, स्ट्रमग्रेन और चंद्रशेखर ने सिद्धांत को और अधिक परिष्कृत किया। इनके कार्य मुख्य रूप से रेखिल विकिरण के अंतरण के समीकरण के हल और आदर्श परिस्थितियों से विचलन से संबंधित थे।
तारकीय स्पेक्ट्रमों में रेखाओं का विस्तार
तारकीय स्पेक्ट्रमों में अवशोषण रेखाएँ तीव्र फोक्स करने पर भी साधारणतया चौड़ी और अस्पष्ट दिखाई देती हैं। उनके चौड़ी होने के प्रधान कारण निम्नलिखित हैं :
(1) डॉप्लर प्रभाव, जो परमाणुओं के असंगत गतिज (kinetic) गतियों के कारण उत्पन्न होता है। इसमें कभी कभी विक्षोभ विस्तार (Turbulence broadening) को भी सम्मिलित किया जा सकता है, कुछ निश्चित किस्म के तारों में गैसों की अधिक मात्रा की उच्चस्तरीय गति के कारण होता है।
(2) विकिरण अवमंदन (Radiation damping) जो उत्तेजित स्तरों के परिमित जीवनकाल के कारण होता है।
(3) टक्कर अवमंदन (Collision damping) कभी कभी विकिरण परमाणु के साथ कुछ निकटवर्ती परमाणुओं, आयनों या इलेक्ट्रानों की टक्कर के फलस्वरूप चौड़ी रेखा बनती है।
(4) आयनों और इलेक्ट्रानों द्वारा उत्पन्न सांख्यिकीय उच्चावच क्षेत्र के कारण हाइड्रोजन हीलियम रेखाओं पर स्टार्क प्रभाव होता है।
(5) जेमीन प्रभाव - सूर्यकलंकों या चुंबकीय तारों में उत्पन्न रेखाएँ चुंबकीय क्षेत्र द्वारा चौड़ी या खंडित हो जाती हैं।

कोई टिप्पणी नहीं:

एक टिप्पणी भेजें

Pages