द्विध्रुव चुंबकीय और चुंबकत्व का क्वांटम-यांत्रिक मूल - Study Search Point

निरंतर कर्म और प्रयास ही सफलता की कुंजी हैं।

द्विध्रुव चुंबकीय और चुंबकत्व का क्वांटम-यांत्रिक मूल

Share This
"दक्षिण ध्रुव" और "उत्तर ध्रुव" शब्दों के साथ, प्रकृति में प्रदर्शित चुंबकीय क्षेत्र का सबसे आम स्रोत है द्विध्रुव, जो दिक्सूचकों के रूप में चुंबकों के उपयोग जितना पुराना है, जहां वे पृथ्वी के चुंबकीय क्षेत्र के साथ परस्पर क्रिया द्वारा विश्व के उत्तर और दक्षिण ध्रुव को सूचित करते थे। चूंकि चुंबक के विपरीत सिरे एक दूसरे के प्रति आकर्षित होते हैं, चुंबक का उत्तरी ध्रुव दूसरे चुंबक के दक्षिणी ध्रुव के प्रति आकर्षित होता है। पृथ्वी का उत्तरी चुंबकीय ध्रुव (संप्रति कनाडा के उत्तर में आर्कटिक महासागर) भौतिक रूप से दक्षिण ध्रुव है, क्योंकि वह दिक्सूचक के उत्तरी ध्रुव को आकर्षित करता है। चुंबकीय क्षेत्र में ऊर्जा रहती है और भौतिक प्रणालियां कम ऊर्जा वाले विन्यासों की ओर गतिशील होती हैं। जब प्रति-चुंबकीय द्रव्य को चुंबकीय क्षेत्र में रखा जाता है, तो चुंबकीय द्विध्रुव स्वयं को उस क्षेत्र के विपरीत ध्रुवता पर संरेखित करने का प्रयास करता है, जिसके द्वारा निवल क्षेत्र बल कम हो जाता है। जब लौह-चुंबकीय द्रव्य को चुंबकीय क्षेत्र के अंतर्गत रखा जाता है, तब चुंबकीय द्विध्रुव प्रयुक्त क्षेत्र के साथ संरेखित होते हैं, इस प्रकार चुंबकीय डोमेनों की डोमेन दीवारों को विस्तृत करते हैं।

चुंबकीय एकध्रुव

चूंकि बार चुंबक को लौहचुंबकत्व समूचे बार में एकसमान रूप से वितरित इलेक्ट्रॉनों के माध्यम से मिलता है, जब बार मैगनेट को दो हिस्सों में काटा जाता है, प्रत्येक टुकड़ा छोटा बार मैगनेट होता है। हालांकि कहा जाता है कि चुंबक में उत्तरी ध्रुव और दक्षिणी ध्रुव होते हैं, इन दो ध्रुवों को एक दूसरे से अलग नहीं किया जा सकता है। एकध्रुव – अगर ऐसा कोई विद्यमान हो – एक नई मौलिक रूप से अलग क़िस्म का चुंबकीय वस्तु होगी. वह अकेले उत्तरी ध्रुव के रूप में कार्य करेगी, जो दक्षिणी ध्रुव से, या इसके विपरीत जुड़ी नहीं होगी. एकध्रुव विद्युत धारा के समान चुंबकीय आवेश वहन करेगा. 1931 के बाद से क्रमिक खोजों के बावजूद, उन्हें कभी नहीं देखा गया,2010 के अनुसार  और संभवतः वे विद्यमान नहीं होंगे!
फिर भी, कुछ सैद्धांतिक भौतिकी नमूने इन चुंबकीय एकध्रुवों के अस्तित्व का पूर्वानुमान लगाते हैं। 1931 में पॉल डिराक ने देखा कि विद्युत और चुंबकत्व में कुछ प्रतिसाम्य होने के कारण, जैसे कि क्वांटम सिद्धांत का पूर्वानुमान है कि व्यक्तिगत धनात्मक या ऋणात्मक आवेश बिना विपरीत आवेश के देखे जा सकते हैं, वियुक्त दक्षिण और उत्तर चुंबकीय ध्रुव परिलक्षित होने चाहिए. क्वांटम सिद्धांत का उपयोग करते हुए डिराक ने प्रदर्शित किया कि यदि चुंबकीय एकध्रुव विद्यमान हैं, तो विद्युत आवेश के क्वांटमीकरण की व्याख्या की जा सकती है-अर्थात् क्यों परिलक्षित तत्वीय कण ऐसे आवेश वहन करते हैं जो इलेक्ट्रॉन के आवेश के गुणज हैं। कुछ भव्य एकीकृत सिद्धांत तत्वीय कणों के विपरीत, एकध्रुवों का पूर्वानुमान लगाते हैं, जो सॉलिटॉन (स्थानीयकृत ऊर्जा पैकेट) हैं। बिग बैंग में निर्मित एकध्रुवों की संख्या का अनुमान लगाने के लिए इन नमूनों के उपयोग के प्रारंभिक परिणामों ने ब्रह्मांडीय प्रेक्षणों का खंडन किया — एकध्रुव इतने ज़्यादा और अतिविशाल होंगे कि उनका ब्रह्मांड में विस्तार बहुत पहले बंद हो गया होगा. तथापि, मुद्रास्फीति का विचार (जिसके लिए इस समस्या ने आंशिक प्रेरणा के रूप में काम किया) इस समस्या को हल करने में सफल रहा था, जहां नमूने बनाए गए जिनमें एकध्रुव विद्यमान होंगे लेकिन वर्तमान प्रेक्षणों के साथ उनकी अनुरूपता दुर्लभ थी।

चुंबकत्व का क्वांटम-यांत्रिक मूल
सिद्धांततः सभी प्रकार के चुंबकत्व (सुपर-चालकता के समान) विशिष्ट क्वांटम-यांत्रिक तत्व से व्युत्पन्न हुए हैं जिनकी आसानी से व्याख्या नहीं की जा सकती (उदा. क्वांटम यांत्रिकी का गणितीय सूत्रीकरण, विशेष रूप से प्रचक्रण और पाउली सिद्धांत पर अध्याय). वाल्टर हेटलर और फ्रिट्ज लंदन द्वारा 1927 में पहले से ही एक सफल नमूना विकसित किया गया था, जिन्होंने क्वांटम यांत्रिकी व्युत्पन्न किया था, कैसे हाइड्रोजन परमाणुओं से हाइड्रोजन अणुओं का गठन हुआ था, अर्थात् नाभिक A और B में केंद्रित  u_A u_A और u_Bu_B परमाणु हाइड्रोजन कक्ष, नीचे देखें . यह बिलकुल स्पष्ट नहीं है कि यह चुंबकत्व की ओर जाता है, लेकिन निम्न में समझाया जाएगा! हेटलर-लंदन सिद्धांत के अनुसार, तथाकथित दो-पिंडीय आणविक \sigma -कक्षों का गठन होता है, यथा परिणामी कक्षीय है:
\psi(\mathbf r_1,\,\,\mathbf r_2)=\frac{1}{\sqrt{2}}\,\,\left (u_A(\mathbf r_1)u_B(\mathbf r_2)+u_B(\mathbf r_1)u_A(\mathbf r_2)\right)
यहां अंतिम उत्पाद का तात्पर्य है कि पहला इलेक्ट्रॉन, r 1 दूसरे नाभिक में केंद्रित परमाणु हाइड्रोजन-कक्षीय में है, जबकि दूसरा इलेक्ट्रॉन पहले नाभिक आस-पास चलता है। इस "विनिमय" तत्व क्वांटम यांत्रिक गुण की अभिव्यक्ति है कि समान गुण वाले कणों की भिन्न पहचान नहीं हो सकती है। यह न केवल रासायनिक बंधन के गठन के लिए विशिष्ट है, बल्कि हम देखेंगे कि चुंबकत्व के लिए भी है, अर्थात् इस संबंध में शब्द विनिमय पारस्परिक क्रिया उत्पन्न होती है, एक शब्द जो चुंबकत्व के मूल के लिए ज़रूरी है और जो विद्युत-गतिकी द्विध्रुवीय द्विध्रुवीय पारस्परिक क्रिया से उत्पन्न होने वाली ऊर्जा से, मोटे तौर पर 100 और 1000 कारकों से भी अधिक मज़बूत है।
प्रचक्रण प्रकार्य के मामले में \chi (s_1,s_2), जो चुंबकत्व के लिए जिम्मेदार है, हमने पहले ही पाउली सिद्धांत का उल्लेख किया है, यथा एक सममित कक्षीय (अर्थात् ऊपर दर्शाए गए अनुसार + चिह्न द्वारा) को प्रति-सममित प्रचक्रण प्रकार्य सहित (अर्थात् - चिह्न द्वारा) गुणा करना चाहिए और इसके विपरीत . इस प्रकार:
\chi (s_1,\,\,s_2)=\frac{1}{\sqrt{2}}\,\,\left (\alpha (s_1)\beta (s_2)-\beta (s_1)\alpha (s_2)\right),
यानी, न केवल u_A और u_B को, α और β द्वारा क्रमशः प्रतिस्थापित किया जाना चाहिए (प्रथम इकाई का अर्थ है "प्रचक्रण बढ़ाना", दूसरे का अर्थ है "प्रचक्रण घटाना"), बल्कि चिह्न + को - चिह्न द्वारा और अंततःr i असतत मूल्यों द्वारा s i (= ±½); जिससे हमारे पास हैं \alpha(+1/2)=\beta(-1/2)=1 और \alpha(-1/2)=\beta(+1/2)=0 . "एकल दशा" अर्थात् - चिह्न, यानी: प्रचक्रण प्रतिसमानांतर हैं, अर्थात् ठोस के लिए हमारे पास प्रति-लौहचुंबकत्व है और दो परमाणु अणुओं के लिए एक प्रतिचुंबकत्व है। (समध्रुवीय) रासायनिक बंधन के निर्माण की प्रवृत्ति (इसका तात्पर्य है: सममित आणविक कक्षीय का गठन, यानी + चिह्न के साथ) प्रतिसममित प्रचक्रण दशा में (अर्थात् - चिह्न के साथ) स्वतः पाउली सिद्धांत के माध्यम से परिणत होती है। इसके विपरीत, इलेक्ट्रॉनों का कूलंब विकर्षण, यानी इस विकर्षण द्वारा एक दूसरे से बचने की उनकी प्रवृत्ति, इन दो कणों के प्रतिसममित कक्षीय प्रकार्य में (अर्थात् - चिह्न सहित) और अनुपूरक सममित प्रचक्रण प्रकार्य (अर्थात् + चिह्न सहित, तथाकथित "त्रिक प्रकार्यों" में से एक) में परिणत होगी. इस प्रकार, अब प्रचक्रण समानांतर होंगे (लौहचुंबकत्व ठोस में, प्रतिचुंबकत्व दो-परमाणु गैसों में) अंतिम उल्लिखित प्रवृत्ति लौह धातुओं, कोबाल्ट, और निकल में तथा कुछ दुर्लभ मिट्टी में हावी होती है जो लौहचुंबकीय हैं। अधिकांश अन्य धातुएं, जहां प्रथम उल्लिखित प्रवृत्ति हावी होती है, अचुंबकीय (उदा.सोडियम, एल्यूमिनियम और मैग्नीशियम) या प्रति-लौहचुंबकीय हैं (उदा. मैंगनीज़). द्विपरमाणुक गैसें भी लगभग विशेष रूप से द्विचुंबकीय हैं और प्रतिचुंबकीय नहीं. तथापि, π-कक्षीय आवेष्टन की वजह से ऑक्सीजन अणु, जीवन विज्ञान के लिए महत्वपूर्ण अपवाद है।
हेटलर-लंदन के विचारों को चुंबकत्व के हेज़नबर्ग नमूने के साथ सामान्यीकृत किया जा सकता है (हेज़नबर्ग 1928) इस तत्व की व्याख्या इस प्रकार अनिवार्य रूप से क्वांटम यांत्रिकी की सभी बारीकियों पर आधारित है, जबकि विद्युत गतिकी मुख्य रूप से घटना-क्रिया विज्ञान को आवृत करता है।

कोई टिप्पणी नहीं:

एक टिप्पणी भेजें

Pages